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Abstract
Optimizing compilers are notoriously difficult
to implement correctly. Rigorous fuzzy testing
has found that the optimization phase is most
frequently the source of bugs within a compiler
implementation. An incorrect compiler imple-
mentation can manifest bugs in any of the myr-
iad of programs which the implementation com-
piles, including safety-critical software. Mecha-
nized formal verification, as the most trusted
approach to ensuring software is bug-free, has
shown promising results as a solution to incor-
rect compiler implementations. Unfortunately,
mechanized formal verification is a time consum-
ing task requiring experts in the field and, as
a consequence, it is not a standard practice for
compiler implementations.

We introduce and outline a plan to apply mech-
anized formal verification techniques to the opti-
mization phase of a state-of-the-art production
compiler. The GraalVM compiler uses Futamura
projections to implement a variety of hosted lan-
guages; subsequently, all hosted languages share
the same optimization phase. The shared opti-
mization phase allows all hosted languages to
benefit from verifying the optimization phase
with no additional verification effort. We pro-
pose research into verifying the correctness of
the shared optimization phase in a manner that
is accessible to the existing compiler developers.

1 Introduction
As software becomes more elaborate, developers
seek higher levels of abstraction to enable them
to manage the required complexity of modern
projects. As a consequence, concerns of develop-
ers have, in general, shifted away from writing
efficient code and towards writing code which
can be maintained.

The ability of developers to focus on literate
programming at higher levels of abstraction is
in no small part a consequence of optimizing
compilers. Software developers are reliant on
compilers to optimize their code. Consequently,

compiler optimizations have become more spe-
cialized and complex to keep pace with the grow-
ing needs of developers. These advances exacer-
bate the problem of incorrect optimizations for
which compilers are already prone.

The optimization phase of a compiler has been
shown to be prone to introducing translation
bugs [1]. This compiler phase is notoriously dif-
ficult to get right as translations need to ensure
that every subtle semantic rule is preserved.

Figure 1 illustrates how subtle language se-
mantics can invalidate seemingly correct opti-
mizations. At first glance, the unoptimized ver-
sion of lessThan appears to be a poor implemen-
tation of the optimized version. In fact, testing
would indicate that this is the case, Figure 2
shows passing tests which achieve path coverage.
However, due to the semantics of the equality
operator for the Java Integer class, these meth-
ods are not equivalent. For all equal integers,
a, b, larger than 128, the call lessThan(a, b)
returns true while lessThanOpt(a, b) returns
false. The Java equality operator for reference
types performs reference equality. Therefore, two
distinct integer instances equal in value evalu-
ates to false. However, since Java caches all
Integer instances less than 128, their references
are equal if their values are equal [2], allowing
the test suite to pass. This small example serves
to illustrate the challenge of implementing cor-
rect optimizations even when accompanied by a
comprehensive test suite.

Testing can show presence of bugs but not
their absence [3], formal verification is the gold
standard for ensuring programs meet their spec-
ification. While traditional software testing may
suffice for most software projects, for something
as foundational, relied upon, and challenging
as an optimizing compiler, it is often worth the
overhead involved in the formal verification pro-
cess. It is worth reiterating that a bug in a
compiler has the potential to manifest in any
program which it compiles. At best, compiler
bugs manifest as a debugging challenge for the
programmer and, at worst, may manifest in the
failure of a deployed safety-critical system.
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boolean lessThan ( In t eg e r a , I n t eg e r b) {
i f ( a == b) {

return f a l s e ;
}
i f ( a < b) {

return true ;
}
i f ( a > b) {

return f a l s e ;
}
return true ;

}

(a) A convoluted method to calculate if an integer
is less than another

boolean lessThanOpt ( In t eg e r a , I n t eg e r b) {
return a < b ;

}

(b) Potential optimization of the lessThan
method

Figure 1. An example optimization of an overly verbose method to calculate if one integer is less
than another to a simpler computation

a s s e r t lessThan (0 , 0) == lessThanOpt (0 , 0)
a s s e r t lessThan (0 , 1) == lessThanOpt (0 , 1)
a s s e r t lessThan (1 , 0) == lessThanOpt (1 , 0)
a s s e r t lessThan (−1 , 100) == lessThanOpt (−1 , 100)
a s s e r t lessThan (50 , 50) == lessThanOpt (50 , 50)

Figure 2. Unit tests ensuring the optimized and unoptimized code in Figure 1 are equivalent

This thesis is part of a larger collaborative
project between the University of Queensland
and Oracle Labs.1 The project aims to formally
verify the optimization phase of the GraalVM
compiler. The project is led by Professor Ian
Hayes and Associate Professor Mark Utting.
This PhD thesis is funded in part by a gift from
Oracle Labs.

1.1 GraalVM Compiler
The GraalVM compiler [4] is a modern compiler
for the JVM, it has a focus on producing highly
optimized code. The compiler features hot-spot
and native compilation of JVM bytecode. It
is of particular interest due to its approach to
supporting multiple source languages. The exe-
cution of a hosted language is implemented via

1https://www.eait.uq.edu.au/news/article/uq-and-oracle-
team-develop-world-class-cyber-security-experts

an interpreter written in annotated Java [5]. To
overcome the inefficiency of interpretation, the
interpreter code itself is subject to optimization
at runtime using the scheme devised by Futa-
mura [6]. In particular, it is subject to partial
evaluation which allows for efficient execution
comparable to that of existing tailored compilers
[7]. The optimizer (which includes partial evalu-
ation) is crucial to providing efficient execution
of hosted languages. As hosted languages are
implemented by a Java interpreter, the optimiza-
tion and code generation phases are common to
all the languages supported by GraalVM.

1.2 GraalVM Intermediate Representation
During the compilation process of the GraalVM
compiler, the input program is modeled as an
Intermediate Representation (IR) that is a graph
structure. This graph is an implementation of
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i f ( cond ) {
r e s u l t = value1 + value2 ;

} e l s e {
r e s u l t = value2 ;

}
return r e s u l t ;

Figure 3. Control-flow dependent variable

the sea-of-nodes structure introduced by Cliff
Click [8].

The sea-of-nodes structure is based on Static
Single Assignment (SSA) form [9]. Programs
are efficiently converted into SSA form during
parsing [10]. In SSA form, each variable is as-
signed exactly once. For variables whose values
are dependent on the control-flow path, as with
result in Figure 3, 𝜑 variables are introduced.
A 𝜑 variable can have multiple possible values
that are resolved by the control-flow path taken.

Sea-of-nodes is designed for program optimiza-
tions and is particularly well suited for optimiza-
tions such as Conditional Constant Propagation
[11], Global Value Numbering [9], and Global
Code Motion [12]. The sea-of-nodes structure
makes data-flow and control-flow dependencies
explicit by representing these dependencies as
edges of the graph.

The sea-of-nodes structure consists of two su-
perimposed graph structures. The control-flow
graph defines the execution flow of a program,
and the data-flow graph manages value produc-
ing operations and data-flow dependencies. Each
node of the graph can produce at most one value,
as in traditional SSA. Control-flow edges specify
the execution path. Data-flow edges specify data
dependencies.

Demange et al. [13] have provided an initial
formalization of the sea-of-nodes structure in
a limited environment, excluding a model of
the heap, interprocedural calls, and exception
handling. They focus primarily on the formal
semantics of 𝜑 nodes and regions.

As a first step towards optimization verifica-
tion, a semantics of the GraalVM IR has been
developed based on the sea-of-nodes semantics,

but extended to include heap-based object allo-
cation, interprocedural calls, exception handling,
etc. This work has been accepted to the 19th
International Symposium on Automated Tech-
nology for Verification and Analysis. A pre-print
of the paper is available on arXiv [14].

1.3 Compiler Verification
The end-to-end verification of a compiler is a
worthwhile effort and a requisite step for full-
stack verification of a software project. How-
ever, it is an mammoth undertaking requiring
large contributions from experts in the field. As
a result, it is not common practice for most
languages, however, there have been notable
projects in the area.

Painter [15] was the first to explore the idea of
compiler verification; the paper presents a col-
lection of manual proofs for a simple compiler of
arithmetic expressions to a low-level instruction
set.

CompCert [16] is the most notable compiler
verification project. CompCert utilizes the Coq
interactive theorem prover to verify the compila-
tion of a subset of the C Programming Language.
CompCert verifies 20 transformation phases be-
tween 11 intermediate languages. For each in-
termediate language, a formal semantics was
developed and each transformation phase was
verified to be semantics preserving. CompCert
covers verification from after parsing and type-
checking through to the generation of assembly
code. CompCert relies upon the formal seman-
tics of all 11 intermediate languages to be spec-
ified accurately. Extensive fuzzy testing of the
verified components of CompCert [1] found no
bugs, which provides sufficient confidence that
the formal specifications are indeed accurate.

Jitawa [17] is a verified compiler for the Lisp
programming language. The input language for
Jitawa, Lisp, is straight-forward, however Jitawa
has a focus on end-to-end verification which
CompCert lacks. The Jitawa compiler assumes
that every program terminates and does not
offer any guarantees on the correctness of non-
terminating programs.
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CakeML [18] expands on prior compiler verifi-
cation efforts, formally verifying the entire com-
pilation process of a complex and practically
used language, from lexing and parsing down
to the machine code generation. CakeML also
introduces a novel technique of bootstrapping
a verified compiler. Through the use of boot-
strapping, the CakeML project achieves a very
minimal trusted computing base.

1.4 Optimization Phase Verification
Due to the inherent and increasing complexity
of compiler optimizations, coupled with their
natural cohesion with verification techniques,
verifying the optimization phase of a compiler is
a rich area of study. We survey the literature to
provide an overview of the various approaches.

Kozen and Patron [19] are one of the first to
give compiler optimizations special treatment in
the field of formal verification. Kleene Algebra
with Tests (KAT), introduced by Kozen [20],
can be used to encode terminating programs.
Kozen and Patron [19] show how this encod-
ing naturally leads to optimization proofs using
purely equational reasoning. The technique that
they introduce does not give a treatment of
non-terminating programs which cannot be ex-
pressed within KAT. Hand-written proofs are
given with respect to the language-agnostic spec-
ification of optimizations in KAT. Their tech-
nique is unconcerned with a mechanized ap-
proach to optimization implementation or veri-
fication.

Lacey et al. [21] express optimizations as re-
writes of a control-flow graph. Computation tree
logic (CTL) is used to express side conditions of
when the graph rewrites can be applied. They
argue that using CTL to express side conditions
allows mechanized checking of applicability con-
ditions, and therefore mechanized application
of transformations. The TRANS language is in-
troduced for expressing conditional control-flow
graph rewrites on a simple imperative language,
𝐿0. It is argued through extensive example en-
codings that TRANS is a suitably expressive lan-
guage for encoding both local and global trans-
formations based on program path behaviour.

The specification of the TRANS language does
not provide an optimization verification proce-
dure. Mansky and Gunter [22] give the TRANS
specification merit as a verification tool by mech-
anizing the semantics within the Isabelle/HOL
interactive theorem prover. During the course of
their mechanization effort, they discovered use-
ful predicates and definitions which they intro-
duced as an extension to the TRANS specifica-
tion. The practical use of their mechanization is
then demonstrated by verifying the correctness
of an algorithm for transforming a control-flow
graph into SSA form.

Mansky and Gunter [23] go on to investi-
gate the application their earlier work of mech-
anizing TRANS to the problem of concurrent
program optimizations. The existing formaliza-
tion of TRANS which performs transformations
with respect to a control-flow graph is lifted
to PTRANS which specifies transformations of
threaded control-flow graphs [24]. As in their ini-
tial TRANS mechanization, the authors provide
evidence of the practical use of their PTRANS
mechanization by verifying a redundant store
elimination optimization for a language in the
style of LLVM. The choice of optimization is
appropriate as it is strongly influenced by a
concurrent environment.

1.5 Domain Specific Languages
Domain-Specific Languages (DSLs) are a natural
choice for compiler optimizations, because at
their core, compiler optimizations comprise a
class of conditional term rewriting rules. One of
the first papers to explore the implementation of
an optimization DSL was the Sharlit DSL [25],
Sharlit primarily simplifies the implementation
of data-flow analysis and transformations which
are dependent on data-flow analysis results.

The Gospel [26] language was the first op-
timization DSL to introduce the idea of auto-
mated analysis of optimizations expressed in
the language. The Gospel language is a formal
notation for specifying compiler optimizations.
The optimization phases which it generates can
be used to analyse dynamic properties of each
optimization, including analysing interactions
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between optimizations, such as order of applica-
tion.

Optimization specification languages such as
Cobalt [27] and Rhodium [28] take the analysis
of transformations one step further by automat-
ically proving the soundness of optimizations
expressed in the languages. Both of these lan-
guages use the approach introduced by Lacey et
al. [21], i.e. control-flow graph rewriting based
on CTL side conditions. To allow for automated
soundness proofs these languages limit the ex-
pressibility of the original approach.

R. Tate et. al [29] introduce a novel technique
which generates new optimizations by example.
Concrete example programs are given before and
after an optimization application. The transfor-
mation from the example is then generalized
to a more broadly applicable optimization by
ensuring that the generalized optimization is
provably correct.

2 Methodology
2.1 Overall Approach
Our approach can be expressed as:

1. encode the IR semantics into Isabelle/HOL;
2. define a proof obligation for the correctness

of optimizations in Isabelle/HOL;
3. write a DSL to express optimizations which

can translate into Isabelle/HOL;
4. encode the optimizations in the DSL;
5. prove the optimizations satisfy the correct-

ness obligation; and
6. integrate verified optimizations into the ex-

isting compiler infrastructure.

For this project, we have chosen to use the
Isabelle/HOL interactive theorem prover as a
tool to interactively prove optimizations.

As with any formal verification effort, soft-
ware must be shown to be correct with respect
to a specification. In the case of compiler opti-
mizations, the optimizations must be semantics
preserving. To show that optimizations are se-
mantics preserving, we first need a formalized
semantics of the compiler’s IR (1).

Once we have defined the semantics of the IR,
we need to define the conditions for IR trans-
formations to be semantics preserving (2). This
definition acts as our correctness proof obliga-
tion — if we can show that the semantics are
always preserved by an optimization, then that
optimization is verified.

In order to make the verification of new and
existing optimizations as accessible as possible,
we aim to be able to express optimizations in a
DSL (3). The proposed DSL aims to be clear and
suitably expressive for compiler developers. One
output target of the DSL is the optimization
expressed in Isabelle/HOL, allowing proof of
correctness using an appropriate obligation. Java
code to implement the optimization is another
possible output target. This is discussed in more
detail in Section 2.3.

Once we have established a suitably expres-
sive DSL, we can encode each of the existing
optimization rules implemented in GraalVM (4).
This will allow us to ensure that the DSL is ca-
pable of handling arbitrary optimizations. The
Isabelle/HOL DSL target will generate a proof
obligation to show that the optimization is se-
mantics preserving. For each optimization we
encode, we will need to show the proof obligation
is satisfied (5).

Finally, the verified optimization phases will
need to be integrated back into the compiler
(6). The exact approach to this will require fur-
ther investigation. Section 2.3 describes the two
approaches that are being considered.

2.2 Tasks
The proposed project exceeds the scope of a
single PhD project. For completeness, we de-
scribe the approach, tasks, and deliverables of
the whole project. Where tasks and deliver-
ables are listed, a prefixing asterisk indicates
the tasks/deliverables which are prioritized as
the focus of this PhD.

We break our approach down into three types
of tasks; each type of task has different deadline
requirements. Foundational tasks build requi-
site infrastructure for further verification. Strict
deadlines can be set for the completion of these

6



Verifying Compiler Optimization Passes

tasks with possible later stage modification. In-
cremental tasks progressively expand verification
coverage. These efforts are ongoing with no fixed
deadline, but often a metric can be derived to
measure progress. Validation tasks help increase
confidence that incremental tasks are correctly
implemented. The requisite infrastructure for
these tasks can have deadlines but they will be
performed periodically throughout the project.

The following foundational tasks build infras-
tructure to support verification. In order to allow
verification we must:

1. * develop a formal notation to represent the
GraalVM sea-of-nodes based IR;

2. * encode the formal notation into the
Isabelle/HOL theorem prover;

3. * develop an (executable) semantics frame-
work which enables semantics to be speci-
fied for each node;

4. define and encode a semantics preservation
proof obligation;

5. * design a DSL for expressing compiler op-
timizations;

6. * generate Isabelle/HOL encoded optimiza-
tions from the DSL;

7. * generate code to perform optimizations
from the DSL; and

8. * integrate the generated code into the
GraalVM compiler.

The following incremental tasks build upon
the output of the foundational tasks to expand
the set of verified optimizations:

1. encode a formal semantics for each node
of the GraalVM IR in the Isabelle/HOL
interactive theorem prover;

2. express each existing optimization phase in
the DSL; and

3. * verify that each encoded optimization sat-
isfies the proof obligation.

Finally, the validation tasks help ensure that
each incremental task is implemented correctly.
These tasks correspond with the preceding in-
cremental tasks:

1. execute test programs in both GraalVM
and the executable Isabelle/HOL semantics,
ensuring both result in the same value; and

2. perform optimizations in both GraalVM
and the executable Isabelle/HOL optimiza-
tions, ensuring the optimized graphs are
structurally equivalent; and

3. attempt to verify optimizations which were
known to have bugs, ensuring that our spec-
ification is able to identify these bugs.

2.3 Challenges
Whilst the main challenge of the project will be
the inherent complexity which accompanies any
verification effort, our project is also accompa-
nied by unique difficulties:

1. Establishing a semantics for the existing
compiler implementation with sufficient con-
fidence of a correct formalization.

2. Faithful translation of existing optimization
implementations to an abstract notation for
expressing optimizations.

3. Incrementally integrating a verified opti-
mization phase into the existing compiler
infrastructure.

This section attempts to address each of these
challenges and the proposed solution to resolve
the issue.

During the development of an executable se-
mantics for the IR of the compiler, we want to
ensure that our semantics corresponds with the
GraalVM implementation. This is a non-trivial
task. Fortunately, we are able to utilize the exist-
ing compiler test cases to increase our confidence
in correctness. The existing GraalVM compiler
test cases provide expected execution output for
a host of representative Java programs. We can
execute these programs using our executable
Isabelle/HOL semantics and compare the gen-
erated output with the expected output. While
this does not provide strong confidence, particu-
larly as it only compares a single output value
and not the whole execution state, it does pro-
vide sufficient confidence for our purposes at
this stage.

Next, our encoding of the existing optimiza-
tions in our notation must remain as faithful as
possible to the original implementation. Faithful
implementation of the optimizations allows us
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to evaluate the success of the project by high-
lighting any potential implementation bugs. We
propose a validation approach based on Figure 4.
We assert that given a correct encoder program
and faithfully encoded optimizations, that the
diagram commutes. The process for validating
correct encodings of optimizations (and as a
side-effect, the encoder program) is as follows.
We take a collection of input programs and, for
each input program graph, 𝐺

1. Encode 𝐺 into the Isabelle/HOL represen-
tation, producing 𝐸.

2. Trigger an Isabelle/HOL optimization of
the encoded unoptimized graph, 𝐸, to pro-
duce 𝐸′.

3. Trigger a GraalVM compiler optimization
of the graph, producing 𝐺′.

4. Encode the GraalVM optimized graph, 𝐺′,
into Isabelle/HOL, this process should pro-
duce an equivalent 𝐸′.

5. We then show by structural equality that
both approaches for reaching 𝐸′ are equiv-
alent, and therefore that the diagram com-
mutes.

G G’

E E’

Graal Optimization

𝑒𝑛𝑐𝑜𝑑𝑒 𝑒𝑛𝑐𝑜𝑑𝑒

Isabelle Optimization

Figure 4. Commutative diagram for validating
encoded optimizations

This process, for a sufficiently large collection
of input programs, gives us a high degree of
confidence that the encoded optimizations are
faithful.

The final unique challenge of integrating ver-
ified optimizations into the compiler requires
further research into suitable approaches, how-
ever we can outline two potential approaches.

The first approach uses the code generation
facilities of Isabelle/HOL, which can translate
Isabelle/HOL definitions into a range of tar-
get languages. Fortunately, one of the target
languages for code generation is Scala which
compiles to Java bytecode to run on the Java

Virtual Machine (JVM). This property enables
interoperability between Java and the compiled
bytecode from Scala, enabling native calls to
generated procedures which perform optimiza-
tions. Through compiling the generated Scala
with a small translation layer to allow direct ac-
cess and manipulation of the GraalVM IR, the
compiler is then able to use the generated opti-
mization code. The practicality of this approach
still requires evaluation through metrics such
as memory footprint and runtime efficiency. An
initial proof-of-concept integrated optimization
phase will need to be developed. We can then
evaluate the efficiency and eliminate potential
bottlenecks where it is practical to do so. As
optimization phases are modular, implement-
ing generated optimizations will be a process of
incrementally replacing phases.

The second approach directly generates code
to perform optimizations from the DSL. We
would simply implement a secondary DSL com-
piler backend to generate Java code, in addition
to Isabelle/HOL theories. This approach gives
us more control over the efficiency of generated
output, which makes it a more practical solution
from an efficiency point of view. However, we
then encounter the problem of correctness for
our DSL translation. In order for us to claim
that we have verified the optimization phase,
we need to be confident that the optimization
code generated from our DSL corresponds ex-
actly with the Isabelle/HOL encoding. If this
approach is found to be more practical, then
we will need to investigate a way to verify that
both DSL backends produce equivalent output,
i.e. that the proof obligation is equivalent to the
implementing code.

3 Outcomes
We partition the expected deliverables into two
categories. Project deliverables consist of the de-
liverables that are essential to the success of the
project. In addition to the project deliverables,
we expect to produce investigation deliverables,
which are tools to help our understanding of the
system, or to otherwise assist our development.
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3.1 Project Deliverables
∙ * A formal specification of the GraalVM

IR.
∙ * An executable semantics of the GraalVM

IR.
∙ * A DSL for expressing optimizations, in-

cluding the following features:
– a language specification;
– syntax highlighting using Language Server

Protocol; and
– debugging tools.

∙ * A DSL backend to transform the encoded
optimizations into:
– Isabelle/HOL theories including automat-

ing proof or counter-example generation
through SMT solvers; and

– code to perform optimization transforma-
tions.

∙ A sufficient collection of supporting theories
to enable mostly automated verification.

3.2 Investigation Deliverables
∙ * A collection of well-formedness properties

of the GraalVM IR. These properties will
be used to prove that all well-formed IRs
have a corresponding semantics, i.e. the
semantics of the IR are total. The well-
formedness properties can be integrated
back into the compiler to ensure all con-
structed IR graphs are well-formed.

∙ An encoder program to transform GraalVM
IR graphs to the Isabelle/HOL IR graph
notation.

∙ * A GraalVM IR interpreter derived directly
from the formal semantics.

∙ A fuzzy testing-based bug finder for Java
compiler implementations using the CSmith
approach [1].

4 Timeline
4.1 Proposed Publications
The following proposed publications serve to
document the process of verifying an existing
compiler implementation.

A Formal Semantics for the GraalVM IR ad-
dresses formalizing a sea-of-nodes based IR in
the context of procedure calls and a heap (ac-
cepted for ATVA 2021).

Using Automated Testing to Validate a Com-
piler Optimization Verifier documents the tech-
niques employed to validate that our semantics
and optimization encodings are faithful to the
original implementation.

Verification of Existing GraalVM Optimiza-
tion Suites documents the challenges encoun-
tered and resolution methods involved in verify-
ing at least one existing optimization suite.

An Expressive and Verifiable Compiler Op-
timization DSL documents all of the required
design decisions to allow the DSL to optimize for
both expressiveness and automated verification.

Incremental Compiler Optimization Verifica-
tion documents the process and technical chal-
lenges of integrating verified optimization code
incrementally into an existing compiler.

4.2 Proposed Venues
Here we enumerate the potential venues suit-
able for publishing the proposed research. The
topics of the proposed venues include formal ver-
ification, testing, programming languages, and
general software engineering.

Conferences
1. Automated Technology for Verification and

Analysis (ATVA)
2. Interactive Theorem Proving (ITP)
3. International Symposium on Formal Meth-

ods (FM)
4. Automated Software Engineering (ASE)

9



Brae Webb

5. Computer Aided Verification (CAV)
6. International Conference on Software Test-

ing, Verification, and Validation (ICST)
7. Conference on Programming Language De-

sign and Implementation (PLDI)
8. Symposium on Principles of Programming

Languages (POPL)
9. Asia-Pacific Software Engineering Confer-

ence (APSEC)
10. Asian Symposium on Programming Lan-

guages and Systems (APLAS)
11. International Conference on Formal Engi-

neering Methods (ICFEM)
Journals
1. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS)
2. ACM Transactions on Computational Logic

(TOCL)
3. Formal Methods in System Design
4. Logical Methods in Computer Science

(LMCS)
5. Theoretical Computer Science (TCS)
6. Formal Aspects of Computing: applicable

formal methods (FAOC)
7. Journal of Logic and Computation
8. Science of Computer Programming
9. ACM Transactions on Software Engineering

and Methodology (TOSEM)
10. ACM Transactions on Architecture and

Code Optimization (TACO)
11. Acta Informatica
12. Software Testing, Verification and Reliabil-

ity (STVR)

4.3 Gantt Chart
The Gantt chart presented in Figure 5 lists the
numbered foundational tasks from Section 2. It
also lists the unnumbered incremental tasks as
a broad time period wherein the task will be
performed.
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1. IR notation

2. Encode notation

3. Base semantics

Encode node semantics

4. Proof obligation

Encode optimizations

Confirmation

5. DSL

6. Isabelle DSL backend

7. Java DSL backend

8. Integrate optimizations

Write Thesis

Mid-Candidature Review

Thesis Review

Figure 5. Project Gantt Chart
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