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Abstract

At the University of Queensland, we’re working to verify the optimization
passes of the GraalVM compiler. This article conveys the advantages of verify-
ing a polyglot partially evaluating compiler, such as GraalVM. Specifically, we
explore how optimizations enable polyglot behaviour, and how optimizations
become shared among host languages. This is demonstrated through the man-
ual partial evaluation of a hypothetical Simple Arithmetic Language (SAL).

1 GraalVM and Truffle

The GraalVM compiler is a modern, state-of-the-art compiler for JVM bytecode. At
face value, the major advantage of verifying GraalVM optimizations is that it hosts an
extensive suite of optimizations. However, when investigating Truffle, the compilers
approach to implementing new languages, the advantages becomes apparent.

As a polyglot compiler, GraalVM is able to act as a compiler for a wide range
of languages, all the way from C to Python. To accomplish this task, Futamura
projections are used. GraalVM is one of the first production compilers to successfully
implement the first Futamura projection. This technique only requires that language
implementers produce a functional interpreter. Then, utilizing partial evaluation, the
Truffle framework is able to execute the given language interpreter at comparable
speeds to a tailor-made compiler.

2 Implementing a Language

To truly understand the advantage afforded by this technique, we demonstrate im-
plementing a new language. The language is very simple, each line represents an
arithmetic expression, when the line is evaluated, the resulting value of the expres-
sion will be output. An example program in our Simple Arithmetic Language (SAL)
is shown in Figure 1.
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1 a + b − 0 ;
2 a − c ;

Figure 1: A program in our Simple Arithmetic Language

1 Program program = new Program(
2 new SubNode (
3 new AddNode(
4 new VariableNode ( ”a” ) ,
5 new VariableNode ( ”b” )
6 ) ,
7 new ConstantNode (0 )
8 ) ,
9 new SubNode (
10 new VariableNode ( ”a” ) ,
11 new VariableNode ( ”c” )
12 )
13 ) ;

Figure 2: Constructing an AST to represent the program from Figure 1

To implement SAL, we will assume there is an existing collection of classes for
representing the AST. Each expression has a corresponding node class which are
nested to form a tree structure.

Figure 2 shows how to construct an AST which represents the program from
Figure 1. In addition to an AST, SAL needs an interpreter. The interpreter for SAL
uses the visitor pattern to offload execution semantics onto each node class. The
interpreter loop for SAL is shown in Figure 3.

Each line, or expression, of the program is executed by calling the executemethod
of the top level node. Figure 4 illustrates a representative collection of execute

methods for AST nodes. The tree structure allows binary and unary expressions to
be easily evaluated using the expected operations. We will treat variables as arbitrary
dynamic program data, performing a symbol table lookup is a blackbox which can
produce different values during each execution.
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1 void executeProgram (Program program ,
2 SymbolTable symtab ) {
3 for ( Express ion l i n e : program . ge tExpre s s i ons ( ) ) {
4 int value = l i n e . execute ( symtab ) ;
5 p r i n t ( va lue ) ;
6 }
7 }

Figure 3: SAL interpreter main loop

1 class AddNode extends Express ion {
2 Express ion l e f t ;
3 Express ion r i g h t ;
4
5 int execute ( SymbolTable symtab ) {
6 return l e f t . execute ( symtab )
7 + r i gh t . execute ( symtab ) ;
8 }
9 }
10
11 class ConstantNode extends Express ion {
12 int value ;
13
14 int execute ( SymbolTable symtab ) {
15 return value ;
16 }
17 }
18
19 class VariableNode extends Express ion {
20 St r ing i d e n t i f i e r ;
21
22 int execute ( SymbolTable symtab ) {
23 return symtab . lookup ( i d e n t i f i e r ) ;
24 }
25 }

Figure 4: Visitor methods of SAL AST node classes

3



1 Program program = new Program(
2 new SubNode (
3 new AddNode(
4 new VariableNode ( ”a” ) ,
5 new VariableNode ( ”b” )
6 ) ,
7 new ConstantNode (0 )
8 ) ,
9 new SubNode (
10 new VariableNode ( ”a” ) ,
11 new VariableNode ( ”c” )
12 )
13 ) ;
14 for ( Express ion l i n e : program . ge tExpre s s i ons ( ) ) {
15 int value = l i n e . execute ( symtab ) ;
16 p r i n t ( va lue ) ;
17 }

Figure 5: Visualisation of partially evaluating an interpreter with a source program

3 Partial Evaluation

The interpreter developed in the previous section would yield underwhelming per-
formance if used directly, particularly in comparison to tailor-made compilers. To
overcome this inefficiency partial evaluation is used. In partial evaluation, program
input is divided into static input data and dynamic input data. Partial evaluation
embeds the static input data within the program, this produces a program which only
takes dynamic input data. When combined with traditional optimization tactics, this
technique can significantly improve performance.

Futamura projections refer to various partial evaluation techniques. Specifically,
when the program being partially evaluated (or specialised) is an interpreter. The
first futamura projection is implemented by GraalVM. In the first projection the
static input data is a language written in the target language of the interpreter.
Specialisation of the interpreter will then produce an executable of the input program.

Let us explore how specialisation would be applied to our example SAL program
from Figure 1. Figure 5 assists in visualising specialisation. Our static input data,
the program AST, is inlined within the original executeProgram method from Figure
3.
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1 int value = new SubNode (
2 new AddNode(
3 new VariableNode ( ”a” ) ,
4 new VariableNode ( ”b” )
5 ) ,
6 new ConstantNode (0 )
7 ) . execute ( symtab ) ;
8 p r i n t ( va lue ) ;
9
10 int value = new SubNode (
11 new VariableNode ( ”a” ) ,
12 new VariableNode ( ”c” )
13 ) . execute ( symtab ) ;
14 p r i n t ( va lue ) ;

Figure 6: Specialised example program after loop unrolling

4 Interpreter Optimization

Partial evaluation by itself does not automatically introduce enhanced efficiency. Par-
tial evaluation is a method for exposing optimizations which can be performed. Now
that the interpreter has been specialised so that the value of program is known, the
interpreter can be optimized for program.

First, we know the program only has two lines, or expressions. From that an
optimizer can perform loop unrolling, see Figure 6. Loop unrolling does not increase
efficiency itself, again, it is a step for exposing potential optimizations.

And indeed, it would seem that more optimizations are exposed. From here, it
would be pragmatic for an optimizer to begin applying method inlining. One pass of
inlining would result in Figure 7. When inlining is applied to the full practical extent,
we end up with the program in Figure 8.

If not already clear, Figure 8 should make the power of partial evaluation abun-
dantly clear. Through partial evaluation and optimization, we have produced the
Java equivalent of our example program which was originally written in a custom
language.

Of course, we (and our optimizer) are not finished. There is one final and obvious
optimization to perform. The end of line 3 in Figure 8 has a completely redundant
subtraction of zero. We should therefore apply one final optimization to the inter-
preter. But note; this last optimization has blurred the line between interpreter and
source program. We are no longer optimizing the interpreter for the purposes of
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1 int value = new AddNode(
2 new VariableNode ( ”a” ) ,
3 new VariableNode ( ”b” )
4 ) . execute ( symtab ) −
5 new ConstantNode ( 0 ) . execute ( symtab ) ;
6 p r i n t ( va lue ) ;
7
8 int value = new VariableNode ( ”a” ) . execute ( symtab )
9 − new VariableNode ( ”c” ) . execute ( symtab ) ;
10 p r i n t ( va lue ) ;

Figure 7: Specialised example program after one pass of method inlining

1 int value = (
2 symtab . lookup ( ”a” )
3 + symtab . lookup ( ”b” ) ) − 0 ;
4 p r i n t ( va lue ) ;
5
6 int value = symtab . lookup ( ”a” ) − symtab . lookup ( ”c” ) ;
7 p r i n t ( va lue ) ;

Figure 8: Specialised example program after all passes of method inlining
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partial evaluation. We have just optimized a redundancy from the original program.

5 Conclusion

We have manually specialised a new language interpreter for an example program.
Through this process, we have demonstrated the power and versatility afforded by op-
timizations in the GraalVM compiler. For hosted GraalVM languages, optimizations
perform two important functions;

• enabling efficient interpretation through specialisation, and

• sharing optimizations between languages by further optimizing the specialised
interpreter.

Consequently, it is crucial for optimizations to be correct. Any incorrect optimiza-
tion during the specialisation process could quickly introduce unintelligible program
execution. To ensure correct optimizations, we are undertaking a project which aims
to formally verification these optimization passes.
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