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Our research

Verifying the correctness of optimizations in
the GraalVM compiler.
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Question

Who has heard of GraalVM ?
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Outline

1. Introduce GraalVM .
2. Motivate our research.
3. Overview the contributions of this paper.
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§ GraalVM
“One VM to rule them all”
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Polyglot

GraalVM implements multiple languages,
including Java, JavaScript , Ruby , Python, R,
C , C++, Web Assembly , Ada, Haskell , Rust
and more!
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Partial evaluation

» cat Interpreter.java

 int add(Context c,
 Node lhs, Node rhs) {
 return lhs.eval(c)
 + rhs.eval(c);
 }

+

» cat source.mylang

 (+) 20 x

» cat source.class

 int add(Context c,
 Node lhs, Node rhs) {
 return 20 + c.lookup("x");
 }
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Partial evaluation

» cat Interpreter.java

 int add(Context c,
 Node lhs, Node rhs) {
 return lhs.eval(c)
 + rhs.eval(c);
 }

+

» cat source.mylang

 (+) 20 20

» cat source.class

 int add(Context c,
 Node lhs, Node rhs) {
 return 40;
 }
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Other notable features

• Ahead-of-time compilation.
• Tool support for profiling and debugging .
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§ Motivation
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Our goal

Verify the correctness of optimizations in the
GraalVM compiler.
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Two questions

1. Why verify just the optimizations?
2. Why focus on GraalVM ?
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Why verify just the optimizations?

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract
Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front

1
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Two questions

1. Why verify just the optimizations?
2. Why verify GraalVM ?
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§ Our Contributions
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Contribution #1

Refinement proofs for GraalVM expression
optimizations via term rewriting .
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Consider

((x− y) + y)− (x− y)
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Optimizations as term rewriting

(x− y) + y 7→ x (1)
x− (x− y) 7→ y (2)
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x− (x− y) 7→ y
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Theory vs Practice

Theory
• Expressions are abstract syntax

trees or, terms.

• Optimized by term rewriting .
• Semantics are expressed over

term structure.

Practice

• Expressions are a sea-of-nodes
graph. [Click and Paleczny, 1995]

• Optimized by graph updates.
• Efficiency is gained by sharing .
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Sharing common sub-expressions
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Our earlier work [Webb et al., 2021] defined semantics
and optimizations on the graph structure.

But these proofs were more complex than
necessary...
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How hard?

(!c) ? t : f 7−→ c ? f : t (3)
true ? t : f 7−→ t (4)
false ? t : f 7−→ f (5)

c ? x : x 7−→ x (6)
(u < v) ? t : f 7−→ t (7)

when upperBound(u) < lowerBound(v)
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Why hard?

Graph updates can affect any expressions that
share the updated expression.

We have to explicitly show that potential
cycles and self-reference maintain semantic
preservation.
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Optimizing a graph

e1 e2
7−→
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Optimizing a graph

e1 e2
̸7−→
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Our approach

Abstract the graph representation to a term
representation.
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Term graph to term

g ⊢ n ≃ e

IR Graph

Node identifier

Expression
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Expression semantics

c ⊢ e 7→ v

Method context

Expression

Value
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Expression refinement

For e2 to be a sound optimization of e1 we require that
• whenever e1 evaluates to a value v in some context c, so does e2.
• e2 refines e1,

(e1 ⊒ e2) = (∀c v. c ⊢ e1 7→ v ⇒ c ⊢ e2 7→ v)

• e2 may be well formed in more contexts than e1, e.g. x− x ⊒ 0
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Term graph semantics preservation

e1 ⊒ e2
{n}⊴ g1 ⊆ g2
g1 ⊢ n ≃ e1
g2 ⊢ n ≃ e2

g1 ⊒ g2
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Refinements on terms are easier to define and
prove than equivalent proofs on graphs .
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Contribution #2

A domain specific language to express
expression optimizations in Isabelle/HOL then
1. generate soundness , and
2. termination proof obligations.
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» cat SubNode.thy

 phase SubNode
 terminating trm
 begin

 optimization SubAfterAddRight: "(x + y) - y 7→ x"
 sorry

 end

1. (x+ y)− y ⊒ x

2. trm((x+ y)− y) > trm(x)
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 terminating trm
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Contribution #3

A workflow to enable proofs to be expressed in
the GraalVM compiler and generated as
Isabelle/HOL proofs.



42/48

» cat SubNode.java

 if (forX instanceof AddNode) {
 AddNode x = (AddNode) forX;
 if (x.getY() == forY) {
 return x.getX();
 }
 }
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» cat SubNode.java

 if (forX instanceof AddNode) {
 AddNode x = (AddNode) forX;
 if (x.getY() == forY) {
 // veriopt: SubAfterAddRight: ((x + y) - y) |-> x
 return x.getX();
 }
 }
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Concluding

1. There are good motivations to verify GraalVM optimizations.

2. We have a framework to verify graph optimizations as term
rewrites .

3. We have infrastructure to express optimizations , generate
proof obligations , and automatically apply tactics.

4. We have started integrating into the GraalVM compiler.
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1. Formalize strategy operators to combine optimization rules.

2. Automatically generate code to implement optimizations.
3. Investigate techniques to encode control-flow optimizations.
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How to you know it’s faithful?
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ABSTRACT
We want to verify the correctness of optimization phases in the
GraalVM compiler, which consist of many thousands of lines of
complex Java code performing sophisticated graph transformations.
We have built high-level models of the data structures and opera-
tions of the code using the Isabelle/HOL theorem prover, and can
formally verify the correctness of those high-level operations. But
the remaining challenge is: how can we be sure that those high-level
operations accurately reflect what the Java is doing? This paper ad-
dresses that issue by applying several different kinds of differential
testing to validate that the formal model and the Java code have
the same semantics. Many of these validation techniques should
be applicable to other projects that are building formal models of
real-world code.

CCS CONCEPTS
• Software and its engineering → Compilers; Software veri-
fication; Software testing and debugging.

KEYWORDS
differential testing, validating specifications, compiler optimiza-
tions, GraalVM compiler, Isabelle/HOL

1 INTRODUCTION
GraalVM [11] is a widely-used, high-performance, polyglot com-
piler that supports Java and many other languages, so the correct-
ness of its compiler is of high importance. There are several front
ends to the compiler, including JVM bytecode for Java and other
JVM languages, JavaScript bytecode for running JavaScript and
Node.js programs, LLVM bitcode for executing C/C++, Rust, Ju-
lia, etc., and Truffle interpreters for many other languages. The
compiler can be used for hotspot compilation, where heavily used
methods are compiled and optimized during execution, or for native
compilation to generate an optimized executable binary.

We are formally verifying optimization transformations used in
the GraalVM compiler by building formal models of the compiler’s
Intermediate Representation (IR) [12] and its execution seman-
tics [5, 13], defining optimization transformations, and verifying
that they preserve the execution semantics. Most of these optimiza-
tions are common between the hotspot and native image modes of
the compiler. We are using the Isabelle/HOL theorem prover for our
models and verification, to obtain the highest level of assurance that
the verified optimizations are correct according to our IR semantics.

However, as with all formal verification, a possible weak link
is the connection between the formal models and the real world –
the thousands of lines of Java code that implement the IR and its

high-level optimizations (the GraalVM compiler also includes many
low-level machine-dependent optimizations, but they are outside
the scope of this paper).

This paper addresses two research questions relating to valida-
tion issues between formal models and the real world:

(1) How canwe validate that our IR semantics in Isabellematches
the expected semantics of the GraalVM compiler IR?
This is non-trivial because the compiler IR has no formal
semantics and its nodes do not always directly correspond
with JVM constructs because the IR has to be sufficiently
general to support all its hosted languages.

(2) How can we be sure that our formal descriptions of each IR
optimization transformation correctly match the transforma-
tions that are implemented by Java code in the compiler?
This is challenging to ensure in general because many opti-
mization transformations have complex pre-conditions that
determine whether the optimization is valid, and in the Java
code of the compiler these pre-conditions are typically spread
out over hundreds of lines of code and multiple Java classes
because they may apply to many related optimizations.

Our validation of the Isabelle/HOL IR semantics is split into two
phases: validation techniques for individual arithmetic operators
(see Section 2), and validation of our complete IR Isabelle semantics
by automatically translating the existing GraalVM compiler unit
tests into our Isabelle IR notation and using them to validate the
control-flow and data-flow semantics (see Section 3). In Section 4 we
describe how we validate our Isabelle definitions of IR optimization
transformations against the actual transformations in the compiler,
by differential testing [9] of the Isabelle transformations against
the Java transformations. Our approach leverages the numerous
existing (Java) test cases already used to test the GraalVM compiler.

2 VALIDATING FIXED-WIDTH ARITHMETIC
The GraalVM IR is a sea of nodes data structure [3, 4, 6] that com-
bines the control-flow graph and the data-flow expression graphs
into a single graph structure, with hundreds of different kinds of
nodes. The semantics of expressions has to correctly handle all
the different data types, such as fixed-width integers of 1, 8, 16,
32, and 64 bits (signed and unsigned in some cases), to accurately
implement the semantics of all the different languages supported
by GraalVM. Our Isabelle semantics supports all data types except
for floating-point, which is left for future work.

Our first step towards validating our expression semantics is to
systematically test the semantic definition of each integer operator,
using the boundary values of each fixed-width integer type. Isabelle
includes aword library that defines fixed-width integers of arbitrary
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