Verifying term graph optimizations using
[sabelle/ HOL
Certified Programs and Proofs 2023

Brae J. Webb ITan J. Hayes Mark Utting

16" January 2023

/48

Brae Webb

[an Hayes

Mark Utting

48

Our research
Verifiing the correctness of optimizations in
the GraalVM compiler.

Question

Who has heard of GraalVM?

Outline
. Introduce GraalVM .
2. Motiate our research.

3. Overview the contributions of this paper.

¢ GraalVM

“One VM to rule them all”

Question

What is GraalVM?

Question

What 1s GraalVM?

Answer

e An optimizing JI'T" compiler on top of the
JVM.

Question

What 1s GraalVM?

Answer

e An optimizing JI'T" compiler on top of the
JVM.

e Open-source and written in Java.

Question

What 1s GraalVM?

Answer

e An optimizing JI'T" compiler on top of the
JVM.

e Open-source and written in Java.
e Polyglot support through partial evaluation.

Polyglot

GraalVM implements multiple languages,
including Java, JavaScript, Ruby, Python, R,
C, C++, Web Assembly, Ada, Haskell, Rust

and more!

Partial evaluation

» cat Interpreter.java

1 int add(Context c,

2 Node 1lhs, Node rhs) {
3 return lhs.eval(c) » cat source.class
4 + rhs.eval(c); .
.3 1 int add(Context c,
2 Node lhs, Node rhs) {
3 return 20 + c.lookup("x");
+ a)

» cat source.mylang

1 (+) 20 x

Partial evaluation

» cat Interpreter.java

1 int add(Context c,

2 Node 1lhs, Node rhs) {
3 return lhs.eval(c)
4 + rhs.eval(c);
5
+

» cat source.mylang

1 (+) 20 20

» cat source.class

int add(Context c,
Node lhs, Node rhs) {
return 20 + 20;

18

Partial evaluation

» cat Interpreter.java

1 int add(Context c,

2 Node 1lhs, Node rhs) {
3 return lhs.eval(c)
4 + rhs.eval(c);
5
+

» cat source.mylang

1 (+) 20 20

» cat source.class

int add(Context c,
Node lhs, Node rhs) {
return 40;

18

Other notable features
e Ahead-of-time compilation.
e Tool support for profiling and debugging.

10/48

¢ Motiwation

Our goal
Verify the correctness of optimizations in the

Graal VM compiler.

12/48

Two questions
1. Why verity just the optimizations?
2. Why tocus on Graal VM7

Why verify just the optimizations?

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen

Eric Eide John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a

1 int foo (void) {

2 signed char x = 1;

3 unsigned char y = 255;
4 return x > y;

5

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

‘We created Csmith, a randomized test-case generator that sup-

14

18

Why verify just the optz'mz'zatz’ons?/ Yang et al., 2011]

75
GCC ==
= 90%

15/48

Why verify just the optz'rnizatz’ons?/ya"” et al., 2011]

75
GCC —=90%

Clang — = 95%

15/48

Why verify just the optimizations?/yn’"g et al., 2011]

75
GCC % ~ 90% COH]pCGft [Leroy et al., 2016]
0
-~ 0%
183 2
Clang —=~95%

15/48

Why verify just the optimizations?/yn’"g et al., 2011]

75
GCC — 90% COH]pCGft [Leroy et al., 2016]
79 ;

— &\

1 0
Clang 185 ~ 95%

15/48

Two questions

W T | il
2. Why verity GraalVM?

16/48

Why verify GraalVM?

I Comprehensive optimization suite.

Why verify GraalVM?
I Comprehensive optimization suite.
2. Actively developed.

Why verify GraalVM?

1
2

)

- Comprehensive optimization suite.
- Actively developed.
- Widely used.

Why verify GraalVM?

1
9
3
;J:

- Comprehensive optimization suite.
- Actively developed.
- Widely used.

- Hosted languages rely on optimizations.

Two questions

Wb it et] U
0 Why verify Graal 1712

18/48

¢ Qur Contributions

Contribution #1
Refinement prootfs for GraalVM eapression
optimizations via term rewriting.

20/48

Consider

(z—y)+y) —(z—y)

(x—y)+y) — (v —y))

Optimizations as term rewriting

(x—y)+y—=x
T—(r—y)—y

(z—y)+tym—

Theory vs Practice

Theory Practice

e Expressions are abstract syntax
lrees or, terms.

26/48

Theory vs Practice

Theory Practice

e Expressions are abstract syntax
lrees or, terms.

e Optimized by term rewriting.

26/48

Theory vs Practice

Theory Practice

e Expressions are abstract syntax
lrees or, terms.

e Optimized by term rewriting.

e Semantics are expressed over
term structure.

26/48

Theory vs Practice

Theory Practice

e Expressions are abstract syntax

e Expressions are a sea-of-nodes
lrees or, terms.

graph. [Click and Paleczny, 1995]
e Optimized by term rewriting.
e Semantics are expressed over

term structure.

26/48

Theory vs Practice

Theory Practice

e Expressions are abstract syntax

e Expressions are a sea-of-nodes
lrees or, terms.

graph [Click and Paleczny, 1995]

e Optimized by term rewriting. o Optimized by graph updates.
e Semantics are expressed over

term structure.

26/48

Theory vs Practice

Theory Practice

e Expressions are abstract syntax

e Expressions are a sea-of-nodes
lrees or, terms.

graph. [Click and Paleczny, 1995]
e Optimized by term rewriting. o Optimized by graph updates.
e Semantics are expressed over

term structure.

e Efficiency is gained by sharing.

26/48

Sharing common sub-expressions

27/48

Sharing common sub-expressions

AR

Sharing common sub-expressions

ARGy

27/48

Our earlier work " "/ defined semantics
and optimizations on the graph structure.

28/48

ebb et a

Our earlier work " "/ defined semantics
and optimizations on the graph structure.

But these proofs were more complex than
necessary...

28/48

How hard?

(ley?2t « fr——c?f :t
true?t . f —t
false 7t : f — f
c?r 1 x —x
(u<v)?t . f+—t
when upper Bound(u) < lower Bound(v)

N N N R
—" —r —r ~—r ~—

Why hard?
Graph updates can affect any expressions that
share the updated expression.

30/48

Why hard?
Graph updates can affect any expressions that
share the updated expression.

We have to explicitly show that potential
cycles and self-reference maintain semantic
preservation.

30/48

Optimizing a graph

31/48

Optimizing a graph

32/48

Our approach

Abstract the graph representation to a term
representation.

33/48

Term graph to term

Node identifier

El—f:

Expression

IR Graph

34/4

Expression semantics

Method context Value

Expression

35/48

Expression refinement

For es to be a sound optimization of e; we require that

® whenever e; evaluates to a value v in some context ¢, so does es.
® ey refines ey,

(e Jey)=(Vev.cker—v=ckes—v)

® e9 may be well formed in more contexts than e;, eg. x —x 30

36/48

Term graph semantics preservation

€1 - e
{n} <g1 C g
g1En~e;
o n~ey

2

g1 23 g9

Refinements on terms are easier to define and
prove than equivalent proots on graphs.

38/48

Contribution #2

A domain specific language to express
expression optimizations in Isabelle/HOL then
| generate soundness, and

2. termination proot obligations.

39/48

» cat SubNode.thy

phase SubNode
terminating trm
begin

optimization SubAfterAddRight: "(x + y) -y +— x"
sorry

end

40/48

» cat SubNode.thy

phase SubNode
terminating trm
begin

optimization SubAfterAddRight: "(x + y) -y +— x"
sorry

end

L (z+y)—-yJuz
2. trm((z +y) —y) > trm(x)

40/48

Contribution #3
A workflow to enable proofs to be expressed in

the GraalVM compiler and generated as
[sabelle/ HOL proofs.

» cat SubNode.java

if (forX instanceof AddNode) {
AddNode x = (AddNode) forX;
if (x.getY() == forY) {
return x.getX();
}

42/48

» cat SubNode.java

if (forX instanceof AddNode) {
AddNode x = (AddNode) forX;
if (x.getY() == forY) {
// veriopt: SubAfterAddRight: ((x + y) - y) |-> x
return x.getX();

43/48

Concluding

1. There are good motivations to verify GraalVM optimizations.

44/48

Concluding

1. There are good motivations to verify GraalVM optimizations.

2. We have a framework to verify graph optimizations as term
rewrites.

44/48

Concluding

1.
2.

There are good motivations to verify GraalVM optimizations.

We have a framework to verify graph optimizations as term
rewrites.

- We have infrastructure to express optimizations, generate

proof obligations, and automatically apply tactics.

44/48

Concluding

1.
2.

There are good motivations to verify GraalVM optimizations.

We have a framework to verify graph optimizations as term
rewrites.

- We have infrastructure to express optimizations, generate

proof obligations, and automatically apply tactics.

We have started integrating into the GraalVM compiler.

44/48

Future work

1. Formalize strategy operators to combine optimization rules.

45/48

Future work
1. Formalize strategy operators to combine optimization rules.

2. Automatically generate code to implement optimizations.

45/48

Future work
1. Formalize strategy operators to combine optimization rules.
2. Automatically generate code to implement optimizations.

3. Investigate techniques to encode control-flow optimizations.

45/48

References

|Click and Paleczny, 1995 Click, C. and Paleczny, M. (1995).
A simple graph-based intermediate representation.

SIGPLAN Not., 30(3):35-49.

|Leroy et al., 2016| Leroy, X., Blazy, S., Késtner, D., Schommer, B., Pister, M.,
and Ferdmand7 C. (2016).
CompCert - a formally verified optimizing compiler.
In Embedded Real Time Software and Systems, 8th European Congress, ERTS
’16, Toulouse, France. SEE.

|[Webb et al., 2021 Webb, B. J., Utting, M., and Hayes, I. J. (2021).
A formal semantics of the Gr aalVM inter InLdIdLC representation.
In Hou, Z. and Ganesh, V., editors, Automated Technology for Verification and
Analysis, volume 12971 of Lecture Notes in Computer Science, pages 111-126,
Cham. Springer International Publishing.

A6 /AR

[Yang et al., 2011] Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011).
Finding and understanding bugs in C compilers.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI '11, page 283-294, New York, NY,
USA. Association for Computing Machinery.

A7

How to you know it’s faithful?

O] 4 Dec 2022

Differential Testing of a Verification Framework
for Compiler Optimizations (Experience Paper)

Mark Utting Brae J. Webb Ian J. Hayes
The University of Queensland The University of Queensland The University of Queensland
Australia Australia Australia
m.utting@ugq.edu.au b.webb@uq.edu.au ian.hayes@ug.edu.au
ABSTRACT high-level optimizations (the GraalVM compiler also includes many

‘We want to verify the correctness of optimization phases in the
GraalVM compiler, which consist of many thousands of lines of
complex Java code performing sophisticated graph transformations.
‘We have built high-level models of the data structures and opera-
tions of the code using the Isabelle/HOL theorem prover, and can
formally verify the correctness of those high-level operations. But
the remaining challenge is: how can we be sure that those high-level
operations accurately reflect what the Java is doing? This paper ad-
dresses that issue by applying several different kinds of differential
testing to validate that the formal model and the Java code have
the same semantics. Many of these validation techniques should

be applicable to other projects that are building formal models of
. PR

low-level machine-dependent optimizations, but they are outside
the scope of this paper).

This paper addresses two research questions relating to valida-
tion issues between formal models and the real world:

(1) How can we validate that our IR semantics in Isabelle matches
the expected semantics of the GraalVM compiler IR?
This is non-trivial because the compiler IR has no formal
semantics and its nodes do not always directly correspond
with JVM constructs because the IR has to be sufficiently
general to support all its hosted languages.

(2) How can we be sure that our formal descriptions of each IR
optimization transformation correctly match the transforma-

48

	GraalVM [0.2em] focus ``One VM to rule them all''
	Motivation
	Our Contributions

