Verified expression graph optimization in GraalVM

Formal Methods Australia 2022

Brae J. Webb Ian J. Hayes Mark Utting

 6^{th} June 2022

Outline

- 1. Introduce *GraalVM*.
- 2. Introduce and *motivate* our research.
- 3. Live demo some of our work.
- 4. Explain the Isabelle/HOL representation.

Question

What is **GraalVM**.?

GraalVM

A State-of-the-Art *Optimizing* Compiler.

Key points on GraalVM

1. Open-source and written in Java.¹

¹https://github.com/oracle/graalvm

²Multiple languages

Key points on GraalVM

- 1. Open-source and written in Java.¹
- 2. Polyglot² compiler through partial evaluation.

¹https://github.com/oracle/graalvm

²Multiple languages

Key points on GraalVM

- 1. Open-source and written in Java.¹
- 2. Polyglot² compiler through partial evaluation.
- 3. JIT and AOT compilation modes.

¹https://github.com/oracle/graalvm

²Multiple languages

Our goal

Verify the correctness of optimizations in the GraalVM compiler.

Two questions

- 1. Why verify the *optimizations*?
- 2. Why verify *GraalVM*?

 $Why\ verify\ the\ {\it optimizations?}$

Compiler bugs are bad.

Compiler bugs are bad

$$\frac{75}{79} \approx 90\%$$

Clang
$$\frac{183}{202} \approx 95\%$$

Two questions

- 1. Why verify the *optimizations*?
- 2. Why verify *GraalVM*?

Two questions

- 1. Why verify the *optimizations*?
- 2. Why verify *GraalVM*?

1. Comprehensive optimization suite.

- 1. Comprehensive optimization suite.
- 2. Actively developed.

- 1. Comprehensive optimization suite.
- 2. Actively developed.
- 3. Unique/novel/challenging IR.

- 1. Comprehensive optimization suite.
- 2. Actively developed.
- 3. Unique/novel/challenging IR.
- 4. Partial evaluation relies heavily on optimizations.

Two questions

- 1. Why verify the *optimizations*?
- 2. Why verify *GraalVM*?

Bonus question

Why *verify* compilers at all?

$$\frac{75}{79} \approx 90\%$$

Clang
$$\frac{183}{202} \approx 95\%$$

GCC
$$\frac{75}{79} \approx 90\%$$
 CompCert [Leroy et al., 2016] $\frac{0}{2} \approx 0\%$ Clang $\frac{183}{202} \approx 95\%$

GCC
$$\frac{75}{79} \approx 90\%$$
 CompCert [Leroy et al., 2016] $\frac{0}{0} \approx -\sqrt{(3)}$ Clang $\frac{183}{202} \approx 95\%$

Question

How do we verify an optimization?

Question

How do we verify an optimization?

Answer

Use *Isabelle/HOL* to show that the optimized program refines the unoptimized program, thus the optimization is *semantics preserving*.

Steps to prove an optimization

- 1. A definition of what any program will do in any state.
- 2. Demonstrate that for *all states*: The unoptimized program will *behave the same* as the optimized program.

i.e. semantics are preserved.

* Where we say program we mean the intermediate representation of the program

Steps to prove an optimization

- 1. A definition of what any program will do in any state.
 [Webb et al., 2021]
- 2. Demonstrate that for *all states*: The unoptimized program will *behave the same* as the optimized program.

i.e. semantics are preserved.

* Where we say program we mean the intermediate representation of the program

These proofs were hard...

Question

Why were these proofs hard?

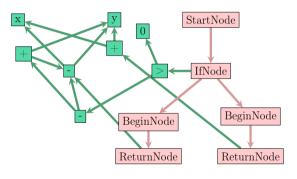
Back to **GraalVM**....

A simple program

```
» cat PositiveAdd.java
static int positiveAdd(int x, int y) {
   if ((((x - y) + y) - (x - y)) > 0) {
       return x + y;
   } else {
       return x - y;
```

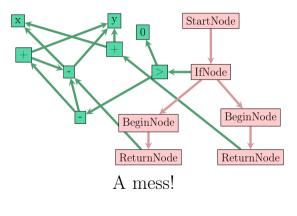
A simple program in GraalVM

```
» cat PositiveAdd.java
static int positiveAdd(int x,
   int y) {
   if ((((x - y) + y) - (x - y)
       ) > 0) {
       return x + y;
   } else {
       return x - y;
```



A simple program in GraalVM

```
» cat PositiveAdd.java
static int positiveAdd(int x,
   int y) {
   if ((((x - y) + y) - (x - y)
       ) > 0) {
       return x + y;
   } else {
       return x - y;
```



Question

Why the mess?

Question

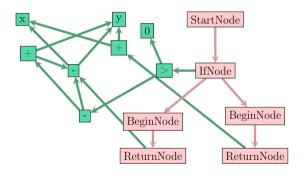
Why the mess?

Answer

It's very efficient [Click and Cooper, 1995].

Common subexpressions (or subgraphs) of the program can be *shared*. Each unque expression is evaluated and stored once.

Important points on the GraalVM IR



- Expressions and control-flow are combined into one graph structure.
- Common sub-expressions are shared.
- Control-flow and data-flow (expressions) can have cycles.

Question

Why were these proofs hard?

Question

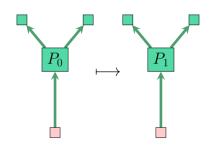
Why were these proofs hard?

Answer

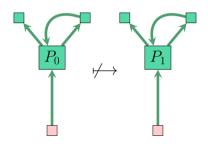
Graph updates can affect any expressions that share the updated expression.

We have to explicitly show that potential cycles and self-reference maintain semantic preservation.

Optimizing a graph



Optimizing a graph



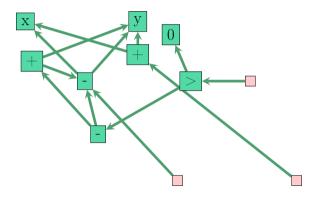
Optimizing a graph

Every optimization proof requires an *inductive* proof to satisfy *self-reference*.

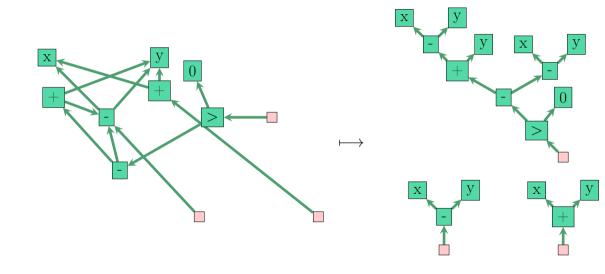
Solution

Represent expressions as trees rather than graphs.

Recall our program graph



Removing sharing offers tree structures



Added benefit

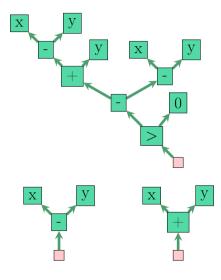
Trees enable natural infix encoding of optimization rules.

Added benefit

Trees enable natural infix encoding of optimization rules.

e.g.
$$x + 0 \longrightarrow x$$

How can we optimize these trees?



How about?

110w aooat

- $1. (x y) + y \longmapsto x$
- $2. x (x y) \longmapsto y$

Are these optimizations *correct*?

Are these optimizations *correct*?

What about *integer overflow*?

Are these optimizations *correct*?

What about *integer overflow*? What about *floating-point* arithmetic?

Are these optimizations *correct*?

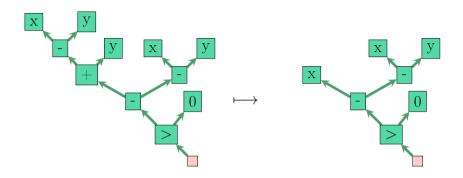
What about *integer overflow*? What about *floating-point* arithmetic? What about *side-effecting* operations?

Live demo

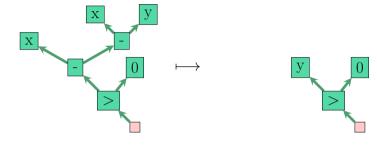
- 1. Show $(x y) + y \longmapsto x$
- 2. Show $x (x y) \longmapsto y$

Now we have proofs

Let's apply the optimizations!



$$(x-y)+y\longmapsto x$$



The fun part

How we represent and prove these optimizations.

Expression Trees

```
datatype IRExpr =
  UnaryExpr IRUnaryOp IRExpr
  | BinaryExpr IRBinaryOp IRExpr IRExpr
  | ConditionalExpr IRExpr IRExpr IRExpr
  | ParameterExpr nat Stamp
  | LeafExpr nat Stamp
  | ConstantExpr Value
```

Expression Trees

```
datatype IRUnaryOp =
                                         UnaryAbs
datatype IRExpr =
                                           UnaryNeg
 UnaryExpr IRUnaryOp IRExpr
                                           UnaryNot
  BinaryExpr IRBinaryOp IRExpr IRExpr
  ConditionalExpr IRExpr IRExpr IRExpr
  ParameterExpr nat Stamp
                                        datatype IRBinaryOp =
  LeafExpr nat Stamp
                                         BinAdd
  ConstantExpr Value
                                           BinMul
                                           BinSub
                                        . . .
```

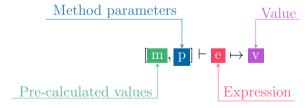
Evaluating expressions depends on

- p a list of values of the parameters to the method
- m a mapping storing already evaluated leaf nodes
 - such as results from method calls

Evaluating expressions depends on

- p a list of values of the parameters to the method
- m a mapping storing already evaluated leaf nodes
 - such as results from method calls

Evaluating expression e to value v is represented by



$$\frac{valid\text{-}value\ (constant AsStamp\ c)\ c}{[m,p] \vdash Constant Expr\ c \mapsto c}$$

$$\frac{i < |p| \quad valid\text{-}value\ s\ p_{[i]}}{[m,p] \vdash Parameter Expr\ i\ s \mapsto p_{[i]}}$$

$$\frac{[m,p] \vdash xe \mapsto v \quad unary\text{-}eval\ op\ v \neq Undef Val}{[m,p] \vdash Unary Expr\ op\ xe \mapsto unary\text{-}eval\ op\ v}$$

$$\frac{[m,p] \vdash xe \mapsto x \quad [m,p] \vdash ye \mapsto y \quad bin\text{-}eval\ op\ x\ y \neq Undef Val}{[m,p] \vdash Binary Expr\ op\ xe\ ye \mapsto bin\text{-}eval\ op\ x\ y}$$

$$\frac{val = m\ n \quad valid\text{-}value\ s\ val}{[m,p] \vdash Leaf Expr\ n\ s \mapsto val}$$

$$(5)$$

Expression refinement

For e2 to be an correct optimization of e1 we require that

- whenever e1 evaluates to a value v in some context [m, p], so does e2.
- e2 refines e1,

$$(\mathit{e2} \leq \mathit{e1}) = (\forall \, \mathit{m} \, \mathit{p} \, \mathit{v}. \, [\mathit{m}, \mathit{p}] \vdash \mathit{e1} \mapsto \mathit{v} \longrightarrow [\mathit{m}, \mathit{p}] \vdash \mathit{e2} \mapsto \mathit{v})$$

• e2 may be well formed in more contexts than e1, e.g. $x-x \ge 0$

$$\frac{i < |p| \quad valid\text{-}value \ s \ p_{[i]}}{[m,p] \vdash ParameterExpr \ i \ s \mapsto p_{[i]}}$$

$$\frac{[m,p] \vdash xe \mapsto v \quad unary\text{-}eval \ op \ v \neq UndefVal}{[m,p] \vdash UnaryExpr \ op \ xe \mapsto unary\text{-}eval \ op \ v}$$

$$\frac{[m,p] \vdash xe \mapsto x \quad [m,p] \vdash ye \mapsto y \quad bin\text{-}eval \ op \ x \ y \neq UndefVal}{[m,p] \vdash BinaryExpr \ op \ xe \ ye \mapsto bin\text{-}eval \ op \ x \ y}$$

$$\frac{val = m \ n \quad valid\text{-}value \ s \ val}{[m,p] \vdash LeafExpr \ n \ s \mapsto val}$$

$$(10)$$

(6)

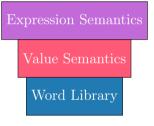
valid-value (constantAsStamp c) c

 $[m,p] \vdash ConstantExpr \ c \mapsto c$

Value Semantics

```
fun intval-add :: Value \Rightarrow Value \Rightarrow Value where
 intval-add (IntVal32 v1) (IntVal32 v2) = (IntVal32 (v1+v2))
 intval-add (IntVal64 v1) (IntVal64 v2) = (IntVal64 (v1+v2))
 intval-add - - = UndefVal
fun intval-xor :: Value \Rightarrow Value \Rightarrow Value where
 intval-xor (IntVal32 v1) (IntVal32 v2) = (IntVal32 (v1 XOR v2))
 intval-xor (IntVal64 \ v1) \ (IntVal64 \ v2) = (IntVal64 \ (v1 \ XOR \ v2)) \mid
 intval-xor - - = UndefVal
fun bin-eval :: IRBinaryOp \Rightarrow Value \Rightarrow Value \Rightarrow Value where
 bin-eval\ BinAdd\ v1\ v2 = intval-add\ v1\ v2
 bin-eval BinXor\ v1\ v2 = intval-xor v1\ v2
```

Our Proof Approach



With those definitions

We can start proving!

In summary

• enables more *concise specification* of optimization rules,

In summary

- enables more *concise specification* of optimization rules,
- reduces the proof burden by a factor of 5 (by line count), while proving a significantly stronger property, and

In summary

- enables more *concise specification* of optimization rules,
- reduces the proof burden by a factor of 5 (by line count), while proving a significantly stronger property, and
- includes *termination* as a proof-obligation.

Future work

• Expand on *proof automation*.

Future work

- Expand on proof automation.
- Extend the DSL to factor out common side conditions

Future work

- Expand on proof automation.
- Extend the DSL to factor out common side conditions.
- Resume work control-flow optimizations.

Thank you!

Any questions?

References

- [Click and Cooper, 1995] Click, C. and Cooper, K. D. (1995). Combining analyses, combining optimizations. TOPLAS, 17(2):181–196.
- Leroy et al., 2016] Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., and Ferdinand, C. (2016).
 - CompCert A Formally Verified Optimizing Compiler. In *ERTS 2016*, Toulouse, France. SEE.
- [Webb et al., 2021] Webb, B. J., Utting, M., and Hayes, I. J. (2021).
 - A formal semantics of the GraalVM intermediate representation.
 - In Hou, Z. and Ganesh, V., editors, Automated Technology for Verification and Analysis, volume 12971 of Lecture Notes in Computer Science, pages 111–126, Cham. Springer International Publishing.

[Yang et al., 2011] Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011). Finding and understanding bugs in C compilers.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '11, page 283–294, New York, NY, USA. Association for Computing Machinery.