Verified expression graph optimization in
GraalVM
Formal Methods Australia 2022

Brae J. Webb Ian J. Hayes Mark Utting

6" June 2022

Outline

I Introduce GraalV.

2. Introduce and motiwate our research.

3. Live demo some of our work.

1. Explain the Isabelle/HOL representation.

Question

What is Graalvm ?

Graal VM

A State-of-the-Art Optimizing Compiler.

Key points on GraalVM

1. Open-source and written in Java.!

"https://github.com/oracle/graalvm
2Multiple languages

https://github.com/oracle/graalvm

Key points on GraalVM

1. Open-source and written in Java.!

0. Polyglot? compiler through partial
evaluation.

"https://github.com/oracle/graalvm
2Multiple languages

https://github.com/oracle/graalvm

Key points on GraalVM

1

L

o

- Open-source and written in Java.!

- Polyglot? compiler through partial
evaluation.

JIT and AOT compilation modes.

"https://github.com/oracle/graalvm
2Multiple languages

https://github.com/oracle/graalvm

Our goal
Verify the correctness of optimizations in the

Graal VM compiler.

Two questions
1. Why verity the optimizations?
2. Why verity Graal VM?

Why verify the optimizations?

Compiler bugs are bad.

Compiler bugs are bad

Crash Semantic Change

Tolerable —— | — Intolerable

Drops Guards

Why verify the optimizations g[Yang et al., 2011]

75
GO —==90
79 &

183
Clang 200 ~ 95%

Two questions
1. Why verity the optimizations?
2. Why verity Graal VM?

Two questions

W TR i o o2
2. Why verity Graal VM?

Why verify GraalVM?

|. Comprehensive optimization suite.

Why verify GraalVM?
|. Comprehensive optimization suite.
2. Actively developed.

Why verify GraalVM?

1
9
D)
J

- Comprehensive optimization suite,
- Actively developed.
- Unique/novel /challenging IR.

Why verify GraalVM?

|
9
4

- Comprehensive optimization suite,
- Actively developed.
- Unique/novel /challenging IR.

- Partial evaluation relies heavily on
optimizations.

Two questions

L Whe et i
0 Why verify Graal 1142

Bonus question

Why wverify compilers at all?

Why verify the optimizations g[Yang et al., 2011]

75
GO —==90
79 &

183
Clang 200 ~ 95%

Why verify the optimizations g[Yang et al., 2011]

75
GCC 2 00% CompCert meoo e, i
79 0
— =~ 0%
al 183 959 ’
alng —_—
SN ’

Why verify the optimizations g[Yang et al., 2011]

75
GCC —==90% CompCert iy et at. 2015
79 0

— N\
183
Clang 709 ~ 95%

Question

How do we verify an optimization”

Question

How do we verify an optimization”

Answer

Use Isabelle/ HOL to show that the optimized
program refines the unoptimized program, thus
the optimization is semantics preserving.

Steps to prove an optimization

1. A definition of what any program will do in any state.

2. Demonstrate that for all states: The unoptimized program
will behave the same as the optimized program.

i.e. semantics are preserved.

* Where we say program we mean the intermediate representation of the program

Steps to prove an optimization

| A definition of wl 0 o s |

[Webb et al., 2021]

2. Demonstrate that for all states: The unoptimized program
will behave the same as the optimized program.

i.e. semantics are preserved.

* Where we say program we mean the intermediate representation of the program

These proofs were hard. ..

Question

Why were these proofs hard?

Back to Graalvm. . . .

A simple program

» cat PositiveAdd.java

1 static int positiveAdd(int x, int y) {

2 if (((x-y)+y)-G-y)) >0 A
3 return x + y;

4 } else {

5 return x - y;

6 }

A simple program in GraalVM

» cat PositiveAdd. java

1 static int positiveAdd(int x,

int y) {
2 if ((((x-3) +y) - (x-17v)
) >0 {
3 return x + y;
4 } else {
5 return x - y;
6 }

l BeginNode

StartNode

‘ ReturnNode ‘

‘ ReturnNode ‘

A simple program in GraalVM

» cat PositiveAdd. java

1 static int positiveAdd(int x,

int y) {
2 if ((((x-3) +y) - (x-17v)
) >0 {
3 return x + y;
4 } else {
5 return x - y;
6 }

BeginNode

StartNode

‘ ReturnNode ‘

‘ ReturnNode ‘

A mess!

Question

Why the mess?

Question

Why the mess?

Answer

It’s very efficien

t [Click and Cooper, 1995]

Common subexpressions (or subgraphs) of the program can be shared.
Each unqiue expression is evaluated and stored once.

Important points on the GraalVM IR

StartNode .
e Expressions and control-flow are

combined into one graph

structure.
® Common sub-expressions are
shared.

e Control-flow and data-flow

(expressions) can have cycles.

‘ ReturnNode ‘ ‘ ReturnNode ‘

Question

Why were these proofs hard?

Question

Why were these proofs hard?

Answer

Graph updates can affect any expressions that
share the updated expression.

We have to explicitly show that potential
cycles and self-reference maintain semantic
preservation.

Optimizing a graph

Optimizing a graph

Optimizing a graph
Every optimization proof requires an nductive
proof to satisty self-reference.

Solution

Represent expressions as trees rather than
graphs.

Recall our program graph

Removing sharing offers tree structures

S
Ly

Added benefit
Trees enable natural infix encoding of
optimization rules.

Added benefit
Trees enable natural infix encoding of
optimization rules.

eg. v +0r—ux

How can we optimize these trees?

How about?
L(x—y)+yr—uz
2. x—(r—y)—y

Waat. . .

Are these optimizations correct?

Wait. . .

Are these optimizations correct?

What about nteger overflow?

Wait. . .
Are these optimizations correct?

What about integer overflow?
What about floating-point arithmetic?

Wait. . .
Are these optimizations correct?

What about integer overflow?
What about floating-point arithmetic?
What about side-effecting operations?

Live demo
1. Show (z —y)+y—
2.Show x — (z —y) —> y

Now we have proofs

Let’s apply the optimizations!

The fun part

How we represent and prove these
optimizations.

Expression Trees

datatype IREzpr =
UnaryExpr IRUnaryOp IRExpr
| BinaryExpr IRBinaryOp IREzpr IRExpr
| ConditionalExpr IRExpr IREzpr IRExpr
| ParameterExpr nat Stamp
| LeafExpr nat Stamp
| ConstantExpr Value

Expression Trees

datatype IRUnaryOp =

datatype IREzpr = UnaryAbs
UnaryExpr IRUnaryOp IRExpr | UnaryNeg
| BinaryExpr IRBinaryOp IRExpr IRExpr | UnaryNot
| ConditionalExpr IRExpr IRExpr IRExpr =
| ParameterExpr nat Stamp datatype IRBinaryOp —
| LeafExpr nat Stamp BinAdd
| ConstantExpr Value | BinMul

| BinSub

Expression Semantics

Evaluating expressions depends on

p a list of values of the parameters to the method
m a mapping storing already evaluated leaf nodes
® such as results from method calls

Expression Semantics

Evaluating expressions depends on
p a list of values of the parameters to the method

m a mapping storing already evaluated leaf nodes
® such as results from method calls

Evaluating expression e to value v is represented by

Method parameters Value

N -6

Pre-calculated values W Expression

Expression Semantics

valid-value (constantAsStamp c) ¢

[m,p] = ConstantEzpr ¢ — ¢

i < |pl valid-value s py)

[m,p] b ParameterExpr i s — Dli)

[m,p] F ze — v unary-eval op v # UndefVal

[m,p] = UnaryEzpr op ze — unary-eval op v

[m,p] b ze — [m,p] F ye — y bin-eval op x y # UndefVal

[m,p] b BinaryExpr op xe ye — bin-eval op z y

val=mn valid-value s val

[m,p] & LeafExpr n s — val

Expression refinement

For e2 to be an correct optimization of el we require that
* whenever el evaluates to a value v in some context [m, p|, so does e2.
° e2 refines el,
(e2<el)=(Ympw [mp|F el —v— [mp] F e2— v)

® ¢2 may be well formed in more contexts than el, e.g. x —x > 0

Expression Semantics

valid-value (constantAsStamp c) ¢

[m,p] = ConstantEzpr ¢ — ¢

i < |pl valid-value s py)

[m,p] b ParameterExpr i s — Dli)

[m,p] F ze — v unary-eval op v # UndefVal

[m,p] = UnaryEzpr op ze — unary-eval op v

[m,p] b ze — [m,p] F ye — y bin-eval op x y # UndefVal

[m,p] b BinaryExpr op xe ye — bin-eval op z y

val=mn valid-value s val

[m,p] & LeafExpr n s — val

Value Semantics

fun intval-add :: Value = Value = Value where
intval-add (IntVal32 vl) (IntVal32 v2) = (IntVal32 (v140v2))
intval-add (IntVal64 v1) (IntVal64 v2) = (IntVal64 (vi4v2))
intval-add - - = UndefVal

fun intval-zor :: Value = Value = Value where
intval-zor (IntVal32 v1) (IntVal32 v2) = (IntVal32 (v1 XOR v2)) |
intval-zor (IntVal64 v1) (IntVal6j v2) = (IntVal64 (v XOR v2)) |
intval-zor - - = UndefVal

fun bin-eval :: IRBinaryOp = Value = Value = Value where
bin-eval BinAdd vl v2 = intval-add v1 v2 |
bin-eval BinXor vl v2 = intval-zor vl v2 |

Our Proof Approach

Expression Semantics

Value Semantics

Word Library

With those definitions

We can start proving!

In summary

e enables more concise specification of
optimization rules,

In summary

e enables more concise specification of
optimization rules,

o reduces the proof burden by a factor of 5 (by
line count), while proving a significantly
stronger property, and

In summary

e enables more concise specification of
optimization rules,

o reduces the proof burden by a factor of 5 (by
line count), while proving a significantly
stronger property, and

e includes termination as a proot-obligation.

Future work

e Expand on proof automation.

Future work
e Expand on proof automation.

e Extend the DSL to factor out common side
conditions.

Future work
e Expand on proof automation.

e Extend the DSL to factor out common side
conditions.

e Resume work control-flow optimizations.

Thank you!

Any questions?

References
|Click and Cooper, 1995| Click, C. and Cooper, K. D. (1995).

Combining analyses, combining optimizations.

TOPLAS, 17(2):181-196.

|Leroy et al., 2016 Leroy, X., Blazy, S., Késtner, D., Schommer, B., Pister, M.,
and Ferdinand, C. (2016).
CompCert - A Formally Verified Optimizing Compiler.
In ERTS 2016, Toulouse, France. SEE.

|[Webb et al., 2021| Webb, B. J., Utting, M., and Hayes, 1. J. (2021).
A formal semantics of the Graal VM intermediate representation.
In Hou, Z. and Ganesh, V., editors, Automated Technology for Verification and
Analysis, volume 12971 of Lecture Notes in Computer Science, pages 111-126,
Cham. Springer International Publishing.

[Yang et al., 2011] Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011).
Finding and understanding bugs in C compilers.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI '11, page 283294, New York, NY,
USA. Association for Computing Machinery.

